Федеральное государственное бюджетное образовательное учреждение высшего образования

"Дальневосточный государственный университет путей сообщения" (ДВГУПС)

УТВЕРЖДАЮ

Зав.кафедрой (к911) Физика и теоретическая механика

Пячин С.А., д.ф.-м.н., профессор

23.05.2025

РАБОЧАЯ ПРОГРАММА

дисциплины Физика

для специальности 23.05.03 Подвижной состав железных дорог

Составитель(и): <u>PhD, Ст.препод., Куликова Г.В.</u>

Обсуждена на заседании кафедры: (к911) Физика и теоретическая механика

Протокол от 23.05.2025г. № 7

Обсуждена на заседании методической комиссии по родственным направлениям и специальностям: Протокол

Визирование РПД для исполнения в очередном учебном году
Председатель МК РНС
2026 г.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2026-2027 учебном году на заседании кафедры (к911) Физика и теоретическая механика
Протокол от2026 г. № Зав. кафедрой Пячин С.А., д.фм.н., профессор
Визирование РПД для исполнения в очередном учебном году
Председатель МК РНС
2027 г.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2027-2028 учебном году на заседании кафедры (к911) Физика и теоретическая механика
Протокол от2027 г. № Зав. кафедрой Пячин С.А., д.фм.н., профессор
Визирование РПД для исполнения в очередном учебном году
Председатель МК РНС
2028 г.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2028-2029 учебном году на заседании кафедры (к911) Физика и теоретическая механика
Протокол от 2028 г. № Зав. кафедрой Пячин С.А., д.фм.н., профессор
Визирование РПД для исполнения в очередном учебном году
Председатель МК РНС
2029 г.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2029-2030 учебном году на заседании кафедры (к911) Физика и теоретическая механика
Протокол от 2029 г. №

Рабочая программа дисциплины Физика

разработана в соответствии с $\Phi\Gamma$ ОС, утвержденным приказом Министерства образования и науки Российской Федерации от 27.03.2018 № 215

Квалификация инженер путей сообщения

Форма обучения очная

ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ С УКАЗАНИЕМ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ, ВЫДЕЛЕННЫХ НА КОНТАКТНУЮ РАБОТУ ОБУЧАЮЩИХСЯ С ПРЕПОДАВАТЕЛЕМ (ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ) И НА САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮЩИХСЯ

Общая трудоемкость 10 ЗЕТ

Часов по учебному плану 360 Виды контроля в семестрах:

в том числе: экзамены (семестр) 2

контактная работа 120 зачёты (семестр) 1

самостоятельная работа 204 PГР 1 сем. (1), 2 сем. (1)

часов на контроль 36

Распределение часов дисциплины по семестрам (курсам)

Семестр (<Курс>.<Семес тр на курсе>)	1 (1.1)		2 (1	1.2)	Итого		
Недель	1	8	1	7			
Вид занятий	УП	РΠ	УП	РΠ	УП	РΠ	
Лекции	32	32	16	16	48	48	
Лабораторные	16	16	16	16	32	32	
Практические	16	16	16	16	32	32	
Контроль самостоятельно й работы	4	4	4	4	8	8	
В том числе инт.	10	10	8	8	18	18	
Итого ауд.	64	64	48	48	112	112	
Контактная работа	68	68	52	52	120	120	
Сам. работа	112	112	92	92	204	204	
Часы на контроль			36	36	36	36	
Итого	180	180	180	180	360	360	

1. АННОТАЦИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

.1 Механика: Законы механики поступательного и вращательного движения материальной точки и твёрдого тела, законы сохранения механической энергии, импульса, момента импульса. Молекулярная физика и термодинамика: Основы молекулярно-кинетической теории. Термодинамика. Основы классической статистической физики. Электромагнетизм: Электростатика. Законы постоянного тока. Магнитное поле в вакууме и в веществе. Электромагнетизм. Колебания и волны: Свободные и вынужденные колебания. Волны. Электромагнитное поле. Оптика: Волновая оптика. Квантовая оптика. Квантовая механика. Квантово-механическое описание поведения микрочастиц. Элементы ядерной физики и физики элементарных частиц.

	2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ								
Код дис	д дисциплины: Б1.О.05								
2.1	2.1 Требования к предварительной подготовке обучающегося:								
2.1.1	Дополнительные главы математики								
2.1.2	Высшая математика								
2.2	Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как								
	предшествующее:								
2.2.1	Теоретическая механика								
2.2.2	Электротехника и электроника								
2.2.3	Сопротивление материалов								

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

ОПК-1: Способен решать инженерные задачи в профессиональной деятельности с использованием методов естественных наук, математического анализа и моделирования

Знать:

основные понятия и методы математического анализа, линейной алгебры, теории дифференциальных уравнений и основные алгоритмы типовых численных методов решения математических задач;

фундаментальные понятия, теории и законы физики для решения инженерных задач; теоретические основы традиционных и новых разделов химии и способы их использования при решении инженерных химических и

материаловедческих задач; основы использования вычислительной техники для моделирования и решения инженерных задач; основные законы теоретической механики для решения инженерных задач в профессиональной деятельности; основные законы термодинамики и теплопередачи для решения инженерных задач в профессиональной деятельности; принципы автоматического управления и регулирования на подвижном составе; методы линеаризации и математического описания линейных систем; особенности анализа нелинейных систем.

Уметь:

использовать фундаментальные понятия, теории и законы математики для решения инженерных задач; использовать фундаментальные понятия, теории и законы физики для решения инженерных задач;

использовать фундаментальные понятия, теории и законы химии для решения инженерных задач; использовать возможности вычислительной техники и применять программное обеспечение персонального компьютера для моделирования и решения инженерных задач; использовать основные законы теоретической механики для решения инженерных задач в профессиональной деятельности;

определять параметры электрических цепей постоянного и переменного тока, различать и выбирать типовые элементы электрических цепей и электрические аппараты, читать электрические схемы, использовать измерительные приборы и проводить измерения; использовать основные законы термодинамики и теплопередачи для решения инженерных задач в профессиональной деятельности;

выполнять мониторинг прогнозирование и оценку экологической безопасности объектов железнодорожного транспорта; анализировать системы автоматического управления подвижным составом (САР);

применять методы линеаризации и математического описания линейных систем; оценивать устойчивость и качество процессов регулирования в нелинейных САР.

Владеть:

методами математического описания и моделирования физических явлений и процессов, определяющих принципы работы подвижного состава железных дороги его систем; опытом использования возможностей вычислительной техники и применения программного обеспечения персонального компьютера для моделирования и решения инженерных задач; основными законами и методами механики; методами физико-химического анализа; методами экологического обеспечения производства и инженерной защиты окружающей среды; методами термодинамического анализа теплотехнических устройств и кузовов подвижного состава; методами выбора электрических аппаратов для типовых электрических схем систем управления; методами чтения электрических схем систем управления исполнительными машинами; терминологией «Теории автоматического управления»; подходами к математическому описанию линейных систем; основами анализа нелинейных САР.

методами математического описания и моделирования физических явлений и процессов, определяющих принципы работы подвижного состава железных дороги его систем; опытом использования возможностей вычислительной техники и применения программного обеспечения персонального компьютера для моделирования и решения инженерных задач; основными законами и методами механики;

методами физико-химического анализа; методами экологического обеспечения производства и инженерной защиты окружающей среды; методами термодинамического анализа теплотехнических устройств и кузовов подвижного состава; методами выбора электрических аппаратов для типовых электрических схем систем управления; методами чтения электрических схем систем управления исполнительными машинами;

терминологией «Теории автоматического управления»; подходами к математическому описанию линейных систем; основами анализа нелинейных САР.

	РЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ), С ВЕДЕННОГО НА НИХ КОЛИЧЕСТВА А						
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- ции	Литература	Инте ракт.	Примечание
	Раздел 1. Лекции						
1.1	Механика: Законы механики поступательного и вращательного движения материальной точки и твёрдого тела, Физические основы механики: кинематика материальной точки, твердого тела. Кинематическое описание движения. Поступательное и вращательное движение. /Лек/	1	4	ОПК-1	Л1.1Л2.3 Л2.2 Л2.1Л3.7 Э1 Э2 Э3	1	Активное слушание
1.2	Физические основы механики: динамина материальной точки, твердого тела. Основная задача динамики. Понятие состояния в классической механике. Инерциальные и неинерциальные системы отсчета. Современная трактовка законов Ньютона. Масса и импульс. Закон и уравнение движения. /Лек/	1	4	ОПК-1	Л1.1Л2.1Л3. 7 Э1 Э2 Э3	1	Активное слушание
1.3	Динамика вращательного движения. Момент инер-ции. Момент силы относительно точки и относи-тельно оси. Момент импульса. Основное уравнение вращательного движения. /Лек/	1	4	ОПК-1	Л1.1Л2.1Л3. 7 Э1 Э2 Э3	0	
1.4	Работа и мощность. Кинетическая энергия. Теорема Кенига. Теорема о кинетической энергии. Консервативные и неконсервативные силы. Потенциальные поля. Полная механическая энергия. Закон сохранения энергии в механике. Законы сохранения механической энергии, импульса, момента импульса. /Лек/	1	4	ОПК-1	Л1.1Л2.1Л3. 7 Э1 Э2 Э3	0	
1.5	Принцип относительности Галилея. Постулаты СТО. Преобразования Лоренца и их следствия. Интервал между событиями. Основной закон релятивистской динамики. Взаимосвязь массы и энергии. /Лек/	1	2	ОПК-1	Л1.1Л2.1Л3. 7 Э1 Э2 Э3	0	
1.6	Физика колебаний и волн: кинематика гармонических колебаний. Единый подход к описанию колебаний и волн различной физической природы. Модель гармонического осциллятора. Свободные, затухающие и вынужденные колебания. Резонанс. Волновое движение. Плоская стационарная волна. Плоская синусоидальная волна. Уравнение волны. Интерференция и дифракция волн, спектральное разложение. /Лек/	1	4	ОПК-1	Л1.1Л2.1Л3. 7 Э1 Э2 Э3	0	

1.7	Термодинамика. Основы классической статистической физики. : молекулярнокинетическая теория, свойства статистических ансамблей, функции распределения частиц по скоростям и координатам. /Лек/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2 Э3	1	Активное слушание
1.8	Уравнение состояния идеального газа. Внутренняя энергия идеального газа. Теплоемкость. Законы термодинамики, элементы термодинамики открытых систем, свойства газов, жидкостей и кристаллов. Первое начало термодинамики и его применение к изопроцессам. Политропный процесс. Цикл Карно и его КПД для идеального газа. Энтропия. Принцип возрастания энтропии. Второе начало термодинамики. /Лек/	1	2	ОПК-1	л1.1л2.1 Э1 Э2 Э3	0	
1.9	Электростатика. Законы постоянного тока. Постоянные и переменные электрические поля в вакууме и в веществе. Напряженность электрического поля. Принцип суперпозиции, поле диполя. Работа поля по перемеще-нию заряда, потенциал поля. Циркуляция вектора напряженности электростатического поля. /Лек/	1	2	ОПК-1	Л1.1Л2.1Л3. 5 Л3.8 Э1 Э2 Э3	0	
1.10	Вектор поляризации. Диэлектрическая проницаемость среды. Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике. Сегнетоэлектрики. Поле внутри проводника и на его поверхности. Распределение зарядов в проводнике. Электроемкость, конденсаторы и их соединения. Энергия электроста-тического поля. Объемная плотность энергии. /Лек/	1	2	ОПК-1	Л1.1Л2.1Л3. 5 Л3.8 Э1 Э2 Э3	0	
1.11	Электрический ток. Сторонние силы. ЭДС источника тока. Сопротивление проводника. Правила Кирхгофа. Классическая электронная теория электропроводности металлов. Закон Ома и закон Джоуля-Ленца в дифференциальной форме. Работа выхода электрона из металла. Эмиссионные явления и их применение. Ионизация газов. Разряды. /Лек/	1	2	ОПК-1	Л1.1Л2.1Л3. 5 Л3.8 Э1 Э2 Э3	1	дискуссия
1.12	Электромагнетизм: Магнитное поле в вакууме и в веществе. Вектор магнитной индукции. Про-водник с током в магнитном поле. Сила Ампера. Сила Лоренца. Эффект Холла. Ускорители заряженных частиц. Большой адронный коллайдер. /Лек/	2	2	ОПК-1	Л1.1Л2.1Л3. 5 Л3.8 Э1 Э2 Э3	0	
1.13	Закон Био-Савара-Лапласа и его применение к расчету магнитных полей. Циркуляция и поток вектора индукции магнитного поля. Закон полного тока и его применение к расчету магнитного поля тороида и соленоида. Работа по перемещению проводника и замкнутого контура с током в магнитном поле. /Лек/	2	2	ОПК-1	Л1.1Л2.1Л3. 5 Л3.8 Э1 Э2 Э3	0	

1.14	Явление электромагнитной индукции.	2	2	ОПК-1	Л1.1Л2.1Л3.	1	Дискуссия
	Закон Фарадея. Правило Ленца. Самоиндукция и взаимоиндукция. Индуктивность контура. Токи при замыкании и размыкании цепи. Энергия магнитного поля. Магнитные моменты электронов и атомов. Диа- и парамагнетизм. Намагниченность. Магнитное поле в веществе. Ферромагнетики. Вихревое электрическое поле. Ток смещения. Теория Максвелла. /Лек/				5 ЛЗ.8 Э1 Э2 Э3	-	
1.15	Электромагнитный колебательный контур. Аналогия между механическими и электромагнитными колебаниями. Свободные затухающие электромагнитные колебания. Вынужденные электромагнитные колебания. Резонанс.Шкала электромагнитных волн. Уравнение электро-магнитной волны. Энергия волны. Свойства и распространение электромагнитных волн, в том числе оптического диапазона. /Лек/	2	2	ОПК-1	Л1.1Л2.1Л3. 7 Л3.5 Э1 Э2 Э3	0	
1.16	Оптика: Волновая оптика. Интерференция света. Опыт Юнга. Расчет интерференционной картины от двух источников. Полосы равной толщины и равного наклона. Кольца Ньютона. Интерферометры Майкельсона. Принцип Гюйгенса-Френеля. Дифракция света. Зоны Френеля. Дифракция на диске и на круглом отверстии. Приближение Фраунгофера. Дифракционная решетка. Типы поляризации света. Закон Малюса. Поляризация света при отражении и преломлении. Закон Брюстера. Вращение плоскости поляризации. /Лек/	2	2	ОПК-1	Л1.1Л2.1Л3. 4 Э1 Э2 Э3	1	Дискуссия
1.17	Квантовая оптика. Квантовая механика. Дисперсия света. Электронная теория дисперсии. Поглощение света. Распределение энергии в спектре абсолютно черного тела. Квантовая гипотеза и формула Планка. Внешний фотоэффект и его законы. Фотоны. Квантовая теория Эйнштейна для фотоэффекта. Давление света. Эффект Комптона. Квантовая природа света. /Лек/	2	2	ОПК-1	Л1.1Л2.1Л3. 4 Э1 Э2 Э3	0	

	T				·	_	1
1.18	Атом водорода по Бору. Атом водорода в квантовой механике. Энергетические	2	2	ОПК-1	Л1.1Л2.1Л3.	0	
	уровни. Потенциалы возбуждения и				Э1 Э2 Э3		
	ионизации. Спектры водородоподобных атомов. Основы						
	атомной и ядерной физики. Квантовая						
	физика: состояние частиц в квантовой						
	механике, дуализм волн и частиц						
	вещества. Гипотеза де Бройля.						
	Волновые свойства микрочастиц и						
	соотношение неопределенностей Гейзенберга. Общее уравнение						
	Шредингера. Уравнение Шредингера						
	для стационарных состояний.						
	Соотношение неопределенностей,						
	электронное строение атомов, молекул						
	и твердых тел, теория химической						
1.10	связи. /Лек/		2	ОПК-1	Л1.1Л2.1Л3.	0	
1.19	Элементы ядерной физики и физики элементарных частиц. /Лек/	2		OHK-1	J11.1J12.1J13.	0	
	STESIOITUPIBIA IUCTIII. /JION				91 92 93		
	Раздел 2. Практика						
2.1	Кинематика поступательного движения	1	2	ОПК-1	Л1.1Л2.3	0	
	и вращательного движения. /Пр/				Л2.2Л3.7		
2.2	Линамика поступатан ного тогомочисти	1	2	ОПК-1	Э1 Э2 Э3 Л1.1Л2.3	0	
۷.۷	Динамика поступательного движения и вращательного движения. /Пр/	1		OHK-1	Л1.1Л2.3 Л2.2Л3.7	U	
					92 93		
2.3	Гармонические колебания.	1	2	ОПК-1	Л1.1Л2.3	0	
	Вынужденные колебания.				Л2.2Л3.7		
	Резонанс. /Пр/				Э1 Э2 Э3		
2.4	Импульс. Работа и энергия. Законы	1	2	ОПК-1	Л1.1Л2.3	0	
	сохранения в механике. /Пр/				Л2.2Л3.7 Э2 Э3		
2.5	Уравнение состояния идеального газа.	1	2	ОПК-1	Л1.1Л2.3	0	
2.3	Примене-ние первого начала	1		OIII-1	Л2.2Л3.7	U	
	термодинамики к изопроцессам. /Пр/				91 92 93		
2.6	Закон Кулона. Принцип суперпозиции	1	2	ОПК-1	Л1.1Л2.3	0	
	полей. Теорема Остроградского-				Л2.2Л3.5		
	Гаусса. /Пр/				Л3.8		
2.7	П	1	2	OTIL 1	Э1	0	
2.7	Потенциальная энергия взаимодействия точечных зарядов.	1	2	ОПК-1	Л1.1Л2.3 Л2.2Л3.5	0	
	взаимодеиствия точечных зарядов. Потенциал. Работа				Л2.2Л3.3		
	электростатического поля.Связь				91 92 93		
	напряженности и потенциала. /Пр/						
2.8	Конденсаторы и их соединения. Законы	1	2	ОПК-1	Л1.1Л2.3	0	
	Ома и Джоуля-Ленца. Правила				Л2.2Л3.5		
	Кирхгофа. Мосты. /Пр/				Л3.8 Э2		
2.9	Закон Био-Савара-Лапласа, закон	2	2	ОПК-1	Л1.1Л2.3	0	
2.9	полного тока и их применение к	<u> </u>		OHK-1	Л2.2Л3.5	U	
	расчету магнитных полей проводников				Л3.8		
	с током /Пр/				Э2 Э3		
2.10	Сила Лоренца. Движение заряженной	2	2	ОПК-1	Л1.1Л2.3	0	
	частицы в магнитном поле.Сила				Л2.2Л3.5		
	Ампера. Взаимодействие двух				Л3.8 Э2		
2.11	проводников. /Пр/ Электромагнитная индукция. Закон	2	2	ОПК-1	Л1.1Л2.3	0	
۷.11	Фарадея. /Пр/	<u> </u>		OHK-1	Л2.2Л3.5	U	
	F. 77 F.				Л3.8		
					Э2 Э3		
2.12	Интерференция света. Дифракция	2	2	ОПК-1	Л1.1Л2.3	0	
	света. /Пр/				Л2.2Л3.4		
					Э2 Э3		

2.12	TC / /			OFFIC 1	H1 1 H2 2		1
2.13	Квантовая природа света. /Пр/	2	2	ОПК-1	Л1.1Л2.3 Л2.2Л3.4 Э2 Э3	0	
2.14	Теория атома водорода по Бору.Сериальные закономерности. /Пр/	2	2	ОПК-1	Л1.1Л2.2 Л2.1Л3.7 Л3.6 Э1 Э2 Э3	0	
2.15	Элементы квантовой механики. Атом водорода в квантовой механике. /Пр/	2	2	ОПК-1	Л1.1Л2.3 Л2.2Л3.6 Э2 Э3	0	
2.16	Строение ядра. Радиоактивность. /Пр/	2	2	ОПК-1	Л1.1Л2.2Л3. 6 Э1 Э2 Э3	0	
	Раздел 3. Лабораторные работы.						
3.1	Измерительные приборы и обработка результатов измерений. /Лаб/	1	2	ОПК-1	Л1.1Л2.1Л3. 7 Л3.2 Э1 Э2	0	
3.2	Законы динамики поступательного движения. Центральный удар шаров. Законы динамики вращательного движения твердого тела. /Лаб/	1	4	ОПК-1	Л1.1Л2.2Л3. 7 Л3.2 Э1	1	работа в малых группах
3.3	Изучение некоторых термодинамических состояний газа. /Лаб/	1	2	ОПК-1	Л1.1Л2.3Л3. 7 Л3.2 Э2	1	работа в малых группах
3.4	Определение коэффициента вязкости жидкости по методу Стокса. Определение коэффициента поверхност-ного натяжения жидкости. /Лаб/	1	2	ОПК-1	Л1.1Л2.2Л3. 7 Л3.2 Э2	1	работа в малых группах
3.5	Проводники в электрическом поле. Исследование электрических полей в электронно-лучевой трубке. /Лаб/	1	2	ОПК-1	Л1.1Л2.1Л3. 5 Л3.8 Л3.1 Э1	1	дискуссии
3.6	Определение характеристик источника постоянного тока. Измерение омических сопротивлений. /Лаб/	1	2	ОПК-1	Л1.1Л2.1Л3. 5 Л3.8 Л3.1 Э2	1	работа в малых группах
3.7	Изучение свойств полярных диэлектриков. Сегнетоэлектрики. /Лаб/	1	2	ОПК-1	Л1.1Л2.1Л3. 5 Л3.8 Л3.1 Э2 Э3	1	работа в малых группах
3.8	Исследование движения заряженных час-тиц в магнитном поле. Изучение магнитного поля соленоида. Исследование намагничивания ферромагнетика. /Лаб/	2	2	ОПК-1	Л1.1Л2.1Л3. 5 Л3.8 Л3.1 Э1	1	работа в малых группах
3.9	Изучение магнитного поля. Определение вектора магнитной индукции Земли. Изучение явления электромагнитной индукции. /Лаб/	2	2	ОПК-1	Л1.1Л2.1Л3. 5 Л3.8 Л3.1 Э2	1	работа в малых группах
3.10	Изучение вынужденных колебаний и явлений резонанса в последовательном колебательном контуре. /Лаб/	2	2	ОПК-1	Л1.1Л2.1Л3. 7 Л3.5 Л3.1 Э2	1	работа в малых группах
3.11	Изучение явления интерференции света./ Определение длины волны света дифракционными методами.Изучение законов поляризации света./ Изучение явления дисперсии света. /Лаб/	2	2	ОПК-1	Л1.1Л2.1Л3. 4 Л3.3 Э1	2	работа в малых группах
3.12	Изучение явления внешнего фотоэффекта./ Изучение законов теплового излучения. /Лаб/	2	2	ОПК-1	Л1.1Л2.1Л3. 4 Л3.3 Э1	0	

3.13	Полупроводниковые фотоэлементы./Полупроводниковые диоды. Зависимость электропроводности твердого тела от температуры.Контактная разность потенциалов между металлом и полупроводником./ Изучение свойств оптического квантового	2	4	ОПК-1	Л1.1Л2.1Л3. 6 Л3.8 Л3.3 Э2	1	работа в малых группах
3.14	генератора. /Лаб/ Строение атома по Бору./Определение первого потенциала возбуждения атома криптона методом Франка и Герца. /Лаб/	2	2	ОПК-1	Л1.1Л2.1Л3. 6 Л3.5 Л3.3 Э1	0	
	Раздел 4. Самостоятельная работа.						
4.1	Расчетно-графические работы (РГР). /Cp/	1	5	ОПК-1	Л1.1Л2.3 Л2.2 Л2.1Л3.6 Л3.5 Л3.4 Э1 Э2 Э3	0	
4.2	Расчетно-графиеские работы (РГР). /Ср/	2	5	ОПК-1	Л2.2 Э1 Э2 Э3	0	
4.3	Оформление отчётов, подготовка к выполнению и защите лабораторных работ. /Ср/	1	20	ОПК-1	Л1.1Л2.3 Л2.2 Л2.1Л3.2 Л3.1 Э1 Э2 Э3	0	
4.4	Оформление отчётов, подготовка к выполнению и защите лабораторных работ. /Ср/	2	20	ОПК-1	Л1.1Л2.3 Л2.2 Л2.1Л3.3 Л3.1 Э1 Э2 Э3	0	
4.5	Подготовка к практическим занятиям, выполнение домашних заданий. /Ср/	1	25	ОПК-1	Л1.1Л2.3 Л2.2 Л2.1Л3.7 Л3.8 Э1 Э2 Э3	0	
4.6	Подготовка к практическим занятиям, выполнение домашних заданий. /Cp/	2	25	ОПК-1	Л1.1Л2.3 Л2.2 Л2.1Л3.6 Л3.5 Л3.4 Э1 Э2 Э3	0	
4.7	Изучение теоретического материала по всем разделам физики и методов физико-математического анализа, моделирования и экспериментального исследования. /Ср/	1	26	ОПК-1	Л1.1Л2.3 Л2.2 Л2.1Л3.7 Л3.8 Л3.2 Э1 Э2 Э3	0	
4.8	Подготовка, оформление и защита РГР. /Ср/	2	24	ОПК-1	Л1.1Л2.3 Л2.2 Л2.1Л3.6 Л3.5 Л3.4 Л3.3 Л3.1 Э1 Э2 Э3	0	
4.9	Подготовка к зачёту, тренировочное компьютерное тестирование. /Ср/	1	36	ОПК-1	Л1.1Л2.3 Л2.2 Л2.1Л3.7 Л3.8 Э1 Э2 Э3	0	
4.10	Подготовка к экзамену, тренировочное компьютерное тестирование. /Ср/	2	18	ОПК-1	Л1.1Л2.3 Л2.2 Л2.1Л3.6 Л3.5 Л3.4 Э1 Э2 Э3	0	
	Раздел 5. Контроль						

5.1	Подготовка к экзамену. /Экзамен/	2	36	ОПК-1	Л1.1Л2.3	0	
					Л2.2		
					Л2.1Л3.6		
					Л3.5 Л3.4		
					Л3.3 Л3.1		
					Э1 Э2 Э3		

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУГОЧНОЙ АТТЕСТАЦИИ

Размещены в приложении

		6.1. Рекомендуемая литература	
	6.1.1. Перече	нь основной литературы, необходимой для освоения дисципл	ины (модуля)
	Авторы, составители	Заглавие	Издательство, год
Л1.1	Трофимова Т.И.	Курс физики: учеб. пособие для вузов	Москва: Академия, 2016,
	6.1.2. Перечень д	ополнительной литературы, необходимой для освоения дист	 циплины (модуля)
	Авторы, составители	Заглавие	Издательство, год
Л2.1	Сивухин Д. В.	Москва: Физматлит, 2009, http://biblioclub.ru/index.php? page=book&id=82998	
Л2.2	Чертов А.Г., Воробьев А.А.	Задачник по физике: учеб. пособие для вузов	Москва: Альянс, 2016,
Л2.3	Волькенштейн В.С.	Сборник задач по общему курсу физики: Для техн. вузов	Санкт-Петербург: Книжный мир, 2004,
6.	1.3. Перечень учебно-м	етодического обеспечения для самостоятельной работы обуч (модулю)	пающихся по дисциплине
	Авторы, составители	Заглавие	Издательство, год
Л3.1	Литвинова М.Н.	Физика: Электричество. Электромагнетизм: сб. лаб. работ	Хабаровск: Изд-во ДВГУПС 2016,
Л3.2	Литвинова М.Н.	Физика: Механика. Молекулярная физика и термодинамика: сб. лаб. работ	Хабаровск: Изд-во ДВГУПС 2016,
Л3.3	Литвинова М.Н.	Физика: Оптика. Физика атома и твердого тела: сб. лаб. работ	Хабаровск: Изд-во ДВГУПС 2016,
Л3.4	Стариченко Г.П.	Оптика: сборник задач по общей физике: учеб. пособие	Хабаровск: Изд-во ДВГУПС 2008,
Л3.5	Троилин В.И.	Электричество и магнетизм: сб. задач по курсу общей физики	Хабаровск: Изд-во ДВГУПС 2008,
Л3.6	Фалеев Д.С.	Физика атома, ядра и твердого тела. Сборник задач по физике: Учеб. пособие для вузов	Хабаровск: Изд-во ДВГУПС 2007,
Л3.7	Фалеев Д.С.	Механика, колебания и волны в упругих средах: Сб. задач по физике	Хабаровск: Изд-во ДВГУПС 2006,
Л3.8	Литвинова М.Н.	Электростатика. Постоянный ток: сб. задач по курсу физики	Хабаровск: Изд-во ДВГУПС 2015,
6.	2. Перечень ресурсов и	нформационно-телекоммуникационной сети "Интернет", не дисциплины (модуля)	еобходимых для освоения
Э1	Электронный каталог І	· · · · · · · · · · · · · · · · · · ·	http://ntb.festu.khv.ru/
Э2	•	иблиотека eLIBRARY.RU	elibrary.ru
Э3	_	ровых образовательных ресурсов	http://school-collection.edu.ru
	Перечень информаци	онных технологий, используемых при осуществлении обра ключая перечень программного обеспечения и информацио (при необходимости)	зовательного процесса по
		6.3.1 Перечень программного обеспечения	_
		ная система, лиц. 46107380	
	inRAR - Архиватор, лиц		
	ree Conference Call (своб	· · · · · · · · · · · · · · · · · · ·	
	оот (свободная лицензи	•	
		ет офисных программ, лиц.45525415 point Security для бизнеса – Расширенный Russian Edition - Анти	

ACT тест - Комплекс программ для создания банков тестовых заданий, организации и проведения сеансов тестирования, лиц. ACT. PM. A096. Л08018.04, дог. 372

КОМПАС-3D (обновления до V16 и V17) - Семейство систем автоматизированного проектирования с возможностями оформления проектной и конструкторской документации согласно стандартам серии ЕСКД и СПДС. контракт 410

Windows 10 - Операционная система, лиц. 1203984219

6.3.2 Перечень информационных справочных систем

Профессиональная база данных, информационно-справочная система Гарант - http://www.garant.ru;

Профессиональная база данных, информационно-справочная система КонсультантПлюс - http://www.consultant.ru

Аудитория	Назначение	ЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ) Оснащение
423	Помещения для самостоятельной работы	Тематические плакаты, столы, стулья, стеллажи Компьютерная
+23	обучающихся. зал электронной информации	техника с возможностью подключения к сети Интернет, свободному доступу в ЭБС и ЭИОС.
3317	Помещения для самостоятельной работы обучающихся. Читальный зал НТБ	Тематические плакаты, столы, стулья, стеллажи Компьютерная техника с возможностью подключения к сети Интернет, свободному доступу в ЭБС и ЭИОС.
3328	Учебная аудитория для проведения занятий лекционного типа.	комплект учебной мебели, доска, тематические плакаты, экран. Технические средства обучения: мультимедиапроектор.
3434	Учебная аудитория для проведения занятий лекционного типа.	комплект учебной мебели, тематические плакаты. Технические средства обучения: интерактивная доска, проектор, ноутбук. Лицензионное программное обеспечение: Windows 10 Pro для образовательных учреждений, версия 1909; Microsoft Office Pro Plus 2007; лиц. 168699; Антивирус Kaspersky Endpoint Security
3431	Учебная аудитория для лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Лаборатория "Элекгричество".	комплект учебной мебели, доска, тематические плакаты, однополярный высоковольтный источник напряжения, осциллограф, термопара, гальванометр, нагреватель, генератор звуковой частоты, источник тока, вольтметр, амперметр, установка для определения изменения энтропии ФПТ1-11.
3435	Учебная аудитория для лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Лаборатория "Элекгромагнетизм".	комплект учебной мебели, доска, тематические плакаты, модули "Изучение свойств сегнетоэлектриков" ФПЭ-02, "Изучение магнитного поля соленоида с помощью датчика Холла" ФПЭ-04, "Изучение гистерезиса ферромагнитных материалов" ФПЭ-07, "Исследование затухающих колебаний" ФПЭ-10, "Изучение вынужденных колебаний" ФПЭ-11, "Определение отношения заряда электрона к его массе методом магнетрона" ФПЭ-03, "Изучение релаксационных колебаний" ФПЭ-12, "Магазин сопротивления" ФПЭ-МС, "Магазин емкостей" ФПЭ-МЕ, "Источник питания" ФПЭ-ИП, осциллограф, генератор, мультиметр. Технические средства обучения: ПК. Лицензионное программное обеспечение: Office Pro Plus 2007, лиц. 45525415, Total Commander – LO9-2108 от 22.04.2009, Windows XP, лиц. 46107380.
3535	Учебная аудитория для лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Лаборатория "Оптика".	комплект учебной мебели, доска, тематические плакаты, установка "Изучение интерференционной схемы "колец Ньютона" ФПВ -05-2-2, установка "Получение и исследование поляризованного света" ФПВ-05-4-1, установка "Изучение дифракционной решетки и дисперсионной стеклянной призмы" ФПВ-05-3/5-1, установка для изучения абсолютно черного тела ФПК-11, установка для изучения внешнего фотоэффекта ФПК-10. Технические средства обучения: интерактивная доска.
3537	Учебная аудитория для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.	комплект учебной мебели, доска, тематические плакаты, установка для определения длины пробега частиц в воздухе (определение длины пробега Альфа-частиц ФПК-03, установка для изучения р-п перехода ФПК-06, установка для изучения температурной зависимости электропроводности металлов и полупроводников ФПК-07, установка для изучения спектра атома водорода ФПК-09, монохроматор МУМ (для ФПК-09), установка для изучения космических лучей ФПК-01, установка для изучения энергетического спектра электронов (изучение Бета - радиоактивности) ФПК-05, установка для изучения и анализа свойств материалов с помощью сцинтилляционного счетчика (изучение Гамма – радиоактивных элементов) ФПК-13, установка для определения резонансного потенциала методом Франка и Герца ФПК-02.
101	Компьютерный класс для практических, лабораторных занятий, групповых и индивидуальных консультаций, текущего	комплект учебной мебели. Технические средства обучения: компьютерная техника с возможностью подключения к сети Интернет, свободному доступу в

Аудитория	Назначение	Оснащение
	для самостоятельной работы. Кабинет информатики (компьютерные классы) *.	Video, 1 Tb, DVD+RW, ЖК 19). Лицензионное программное обеспечение: Windows 10 Pro - MS DreamSpark 700594875, 7-Zip 16.02 (x64) (свободно распространяемое ПО), Autodesk 3ds Max 2019, Autodesk AutoCAD 2021, Autodesk AutoCAD Architecture 2021, Autodesk Inventor 2021, Autodesk Revit 2021- Для учебных заведений предоставляется бесплатно, Foxit Reader (свободно распространяемое ПО), MATLAB R2013b - Контракт 410 от 10.08.2015, Microsoft Office Профессиональный плюс 2007 - 43107380, Microsoft Visio профессиональный 2013 - MS DreamSpark 700594875, Microsoft Visual Studio Enterprise 2017- MS DreamSpark 700594875, Mozilla Firefox 99.0.1 (свободно распространяемое ПО), Opera Stable 38.0.2220.41 (свободно распространяемое ПО), PTC Mathcad Prime 3.0 - Контракт 410 от 10.08.2015, лиц. 3A1874498, КОМПАС-3D V19- КАД-19-0909.ПЭВМ с возможностью выхода в интернет по расписанию Windows 10 Pro Контракт №235 ДВГУПС от 24.08.2021; Office Pro Plus 2019 Контракт №235 от 24.08.2021; Kaspersky Endpoint Security Контракт № 0322100012923000077 от 06.06.2023; КОМПАС-3D V19 Контракт № 995 от 09.10.2019; папоСАD Номер лицензии: NC230P-81412 Срок действия: с 01.08.2023 по 31.07.2024;
201	Компьютерный класс для практических и лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также для самостоятельной работы.	Технические средства обучения: компьютерная техника с возможностью подключения к сети Интернет, свободному доступу в ЭБС и ЭИОС, проектор. Лицензионное программное обеспечение: Windows 10 Pro - MS DreamSpark 700594875, 7-Zip 16.02 (x64) - Свободное ПО, Autodesk 3ds Max 2021, Autodesk AutoCAD 2021, Autodesk AutoCAD Architecture 2021, Autodesk Inventor 2021, Autodesk Revit 2021- Для учебных заведений предоставляется бесплатно, Foxit Reader-Свободное ПО, MATLAB R2013b - Контракт 410 от 10.08.2015, Microsoft Office Профессиональный плюс 2007 - 43107380, Microsoft Visio профессиональный 2013 - MS DreamSpark 700594875, Microsoft Visual Studio Enterprise 2017- MS DreamSpark 700594875, Mozilla Firefox 99.0.1 - Свободное ПО, Opera Stable 38.0.2220.41 - Свободное ПО, PTC Mathcad Prime 3.0 - Контракт 410 от 10.08.2015 лиц. 3A1874498, КОМПАС-3D V19 - КАД-19-0909, ACT-Тест лиц. ACT.PM.A096.Л08018.04, Договор № Л-128/21 от 01.06.2021 с 01 июля 2021 по 30 июня 2022. ПЭВМ с возможностью выхода в интернет по расписанию Windows 10 Pro Контракт №235 ДВГУПС от 24.08.2021; Оffice Pro Plus 2019 Контракт № 235 от 24.08.2021; Kaspersky Endpoint Security Контракт № 0322100012923000077 от 06.06.2023; КОМПАС-3D V19 Контракт № 995 от 09.10.2019; nanoCAD Номер лицензии: NC230P-81412 Срок действия: с 01.08.2023 по 31.07.2024;
3532	Учебная аудитория для проведения лабораторных и практических занятий. Лаборатория "Численное моделирование физических процессов".	Комплект учебно-лабораторного оборудования «Общая физика» в составе 10 лабораторных работ с применением технологии виртуальной реальности Лицензионное программное обеспечение: Windows 10 Pro для образовательных учреждений, версия 1909; Microsoft Office Pro Plus 2007; лиц. 168699; Антивирус Kaspersky Endpoint Security

8. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

8.1. Методические рекомендации к лабораторным занятиям

Для рационального распределения времени обучающегося по разделам дисциплины и по видам самостоятельной работы студентам предоставляется календарный план дисциплины, а также учебно-методическое и информационное обеспечение, приведенное в данной рабочей программе.

В процессе обучения студенты должны усвоить научные основы предстоящей деятельности, научились управлять развитием своего мышления. С этой целью они должны освоить различные алгоритмы мышления. Алгоритмы развития мышления выстраиваются так, чтобы знания (закон, закономерность, определение, вывод, правило и т. д.) могли применяться при выполнении заданий (решении задач).

Преподаватель, ведущий лабораторные работы, сообщает студентам: перечень лабораторных работ, последовательность их выполнения, рекомендуемые учебно-методические пособия, руководства и др.

Подготовка к лабораторным работам осуществляется студентами самостоятельно заблаговременно. В процессе такой подготовки студент должен усвоить теоретический материал, относящийся к данной лабораторной работе, изучить и ясно

представить себе содержание и порядок выполнения лабораторной работы, знать принципы действия и правила работы с измерительными приборами, методы измерений, особенности конструкции лабораторной установки и правила техники безопасности, знать ответы на приведенные в методическом руководстве контрольные вопросы, а также заготовить необходимые таблицы и схемы.

Выполнение лабораторных работ. В начале первого занятия подгруппы в лаборатории преподаватель знакомит студентов с лабораторными установками, измерительной аппаратурой, правилами поведения в лаборатории и правилами техники безопасности и оформляет журнал по технике безопасности, где должна быть подпись студента о прохождении инструктажа. Во время этого занятия преподаватель организует из студентов бригады по 2-3 человека в каждой, знакомит с последовательностью выполнения лабораторных работ и правилами оформления отчета по работе. Лабораторная работа рассчитана на два часа предварительной подготовки и оформления и на два часа выполнения в лаборатории, включая допуск к работе, выполнение эксперимента и обработку его результатов, защиту лабораторной работы в форме собеседования. Лабораторный отчет содержит цель работы, ответы на контрольные вопросы, схему установки, расчетные формулы, таблицу результатов измерений, расчеты и вывод. Для студентов, успешно справившихся с обязательным заданием, предусмотрено дополнительное задание экспериментального характера.

Защита лабораторных работ. Отчёт о проделанной лабораторной работе должен быть представлен к сдаче на следующем занятии и является необходимым, но не единственным условием защиты темы данной лабораторной работы. Защита производится по каждой работе в отдельности в виде индивидуального собеседования с каждым студентом по теоретической и практической частям выполненной работы, а также по данным и результатам оформленного отчета. Ответы на поставленные вопросы студент дает в устной или письменной форме.

Студенты допускаются к сдаче экзамена при условии выполнения и защиты лабораторных работ, предусмотренным планом.

8.2. Методические рекомендации к практическим занятиям

Проведение практических занятий. В течение практического занятия студенту необходимо выполнить задания, выданные преподавателем, для этого при подготовке к практическим занятиям студентам необходимо изучить основную литературу, ознакомиться с дополнительной литературой с учетом рекомендаций преподавателя и требований учебной программы.

8.3. Самостоятельная работа студентов

- 8.3.1. Виды самостоятельной работы студентов и их состав
- изучение теоретического материала по лекциям, учебной и учебно-методической литературе;
- отработка навыков решения задач по темам лекций, практических и лабораторных занятий;
- оформление отчетов о выполненных лабораторных работах и подготовка к их защите;
- курсовая работа;
- подготовка к экзамену.

8.3.2. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- конспекты лекций;
- основная учебная литература, в том числе на электронном носителе;
- дополнительная литература, в том числе на электронном носителе;
- справочники.

Перечень основной и дополнительной литературы приведен в разделе Литература соответствующей РПД.

8.4. Выполнение расчетно-графической работы.

При выполнении расчетно-графической работы студенту необходимо получить задание у преподавателя. Изучить соответствующую литературу.

Защита расчетно-графической работы. Отчёт о проделанной расчетно-графической работе должен быть представлен к сдаче и является необходимым условием для допуска к итоговому контролю по дисциплине. Защита производится в виде индивидуального собеседования с каждым студентом по теоретической и практической частям выполненной работы. Ответы на поставленные вопросы студент дает в устной или письменной форме.

Оценочные материалы при формировании рабочих программ дисциплин (модулей)

Специальность 23.05.03 ПОДВИЖНОЙ СОСТАВ ЖЕЛЕЗНЫХ ДОРОГ

Специализация: Электрический транспорт железных дорог

Дисциплина: Физика

Формируемые компетенции:

1. Описание показателей, критериев и шкал оценивания компетенций.

Показатели и критерии оценивания компетенций

Объект	Уровни сформированности	Критерий оценивания
оценки	компетенций	результатов обучения
Обучающийся	Низкий уровень Пороговый уровень Повышенный уровень Высокий уровень	Уровень результатов обучения не ниже порогового

Шкалы оценивания компетенций при сдаче экзамена или зачета с оценкой

	т оценивания компетенции при едаче экзамена или зачета е оценкои	
Достигнутый	Характеристика уровня сформированности	Шкала оценивания
уровень	компетенций	Экзамен или зачет с
результата		оценкой
обучения		***
Низкий	Обучающийся:	Неудовлетворительно
уровень	-обнаружил пробелы в знаниях основного учебно-программного материала;	
	-допустил принципиальные ошибки в выполнении заданий,	
	предусмотренных программой;	
	-не может продолжить обучение или приступить к	
	профессиональной деятельности по окончании программы без	
	дополнительных занятий по соответствующей дисциплине.	
Пороговый	Обучающийся:	Удовлетворительно
уровень	-обнаружил знание основного учебно-программного материала в	
	объёме, необходимом для дальнейшей учебной и предстоящей	
	профессиональной деятельности;	
	-справляется с выполнением заданий, предусмотренных	
	программой;	
	-знаком с основной литературой, рекомендованной рабочей	
	программой дисциплины;	
	-допустил неточности в ответе на вопросы и при выполнении	
	заданий по учебно-программному материалу, но обладает	
	необходимыми знаниями для их устранения под руководством	
	преподавателя.	
Повышенный	Обучающийся:	Хорошо
уровень	- обнаружил полное знание учебно-программного материала;	1
71	-успешно выполнил задания, предусмотренные программой;	
	-усвоил основную литературу, рекомендованную рабочей	
	программой дисциплины;	
	-показал систематический характер знаний учебно-программного	
	материала;	
	-способен к самостоятельному пополнению знаний по учебно-	
	программному материалу и обновлению в ходе дальнейшей	
	учебной работы и профессиональной деятельности.	

Высокий	Обучающийся:	Отлично
уровень	-обнаружил всесторонние, систематические и глубокие знания учебно-программного материала; -умеет свободно выполнять задания, предусмотренные программой;	
	-ознакомился с дополнительной литературой; -усвоил взаимосвязь основных понятий дисциплин и их значение для приобретения профессии; -проявил творческие способности в понимании учебнопрограммного материала.	

Шкалы оценивания компетенций при сдаче зачета

Достигнуты й уровень результата обучения	Характеристика уровня сформированности компетенций	Шкала оценивания
Пороговый уровень	Обучающийся: - обнаружил на зачете всесторонние, систематические и глубокие знания учебно-программного материала; - допустил небольшие упущения в ответах на вопросы, существенным образом не снижающие их качество; - допустил существенное упущение в ответе на один из вопросов, которое за тем было устранено студентом с помощью уточняющих вопросов; - допустил существенное упущение в ответах на вопросы, часть из которых была устранена студентом с помощью уточняющих вопросов	Зачтено
Низкий уровень	Обучающийся: - допустил существенные упущения при ответах на все вопросы преподавателя; - обнаружил пробелы более чем 50% в знаниях основного учебнопрограммного материала	Не зачтено

Описание шкал оценивания

Компетенции обучающегося оценивается следующим образом:

Планируемый уровень	Содержание шкалы оценивания достигнутого уровня результата обучения				
результатов освоения	Неудовлетворительн	Удовлетворительно	Хорошо	Отлично	
	Не зачтено	Зачтено	Зачтено	Зачтено	
Знать	Неспособность	Обучающийся	Обучающийся	Обучающийся	
	обучающегося	способен	демонстрирует	демонстрирует	
	самостоятельно	самостоятельно	способность к	способность к	
	продемонстрировать	продемонстриро-вать	самостоятельному	самостоятельно-му	
	наличие знаний при	наличие знаний при	применению	применению знаний в	
	решении заданий,	решении заданий,	знаний при	выборе способа	
	которые были	которые были	решении заданий,	решения неизвестных	
	представлены	представлены	аналогичных тем,	или нестандартных	
	преподавателем	преподавателем	которые представлял	заданий и при	
	вместе с образцом	вместе с	преподаватель,	консультативной	
	их решения.	образцом их решения.	и при его	поддержке в части	
			консультативной	межлисшиппинарных	

Уметь	Отсутствие у	Обучающийся	Обучающийся	Обучающийся
	обучающегося	демонстрирует	продемонстрирует	демонстрирует
	самостоятельности	самостоятельность в	самостоятельное	самостоятельное
	в применении	применении умений	применение умений	применение умений
	умений по	решения учебных	решения заданий,	решения неизвестных
	использованию	заданий в полном	аналогичных тем,	или нестандартных
	методов освоения	соответствии с	которые представлял	заданий и при
	учебной	образцом,	преподаватель,	консультативной
	дисциплины.	данным	и при его	поддержке
		преподавателем.	консультативной	преподавателя в части
			поддержке в части	междисциплинарных
			современных	связей.
			проблем.	
Владеть	Неспособность	Обучающийся	Обучающийся	Обучающийся
	самостоятельно	демонстрирует	демонстрирует	демонстрирует
	проявить навык	самостоятельность в	самостоятельное	самостоятельное
	решения	применении навыка	применение навыка	применение навыка
	поставленной	по заданиям,	решения заданий,	решения неизвестных
	задачи по	решение которых	аналогичных тем,	или нестандартных
	стандартному	было показано	которые представлял	заданий и при
	образцу повторно.	преподавателем.	преподаватель,	консультативной
			и при его	поддержке
			консультативной	преподавателя в части
			поддержке в части	междисциплинарных
			современных	связей.
			проблем.	

2. Перечень вопросов и задач к экзаменам, зачетам, курсовому проектированию, лабораторным занятиям. Образец экзаменационного билета

Примерный перечень вопросов к лабораторным работам: Компетенция ОПК-1:

1 семестр:

- 1. Что такое измерение? Какие виды измерений вы знаете? Чем они характеризуются?
- 2. Что такое погрешность (ошибка) измерения? Какие виды погрешностей существуют? Причины их возникновения.
 - 3. Что такое абсолютная и относительная ошибка? В каких единицах они измеряются?
 - 4. Алгоритм вычисления ошибок при прямых и косвенных измерениях.
 - 5. Правила измерения длины с помощью штангенциркуля и микрометра.
 - 6. Понятие силы, массы.
 - 7. 2й закон Ньютона и его формулировки.
 - 8. Что такое консервативная и диссипативная системы? Понятие потенциального поля.
 - 9. Сформулировать закон сохранения механической энергии.
 - 10. Средняя сила удара шарика о рельс (вывод).
 - 11. Что такое удар? Упругий и неупругий удары.
 - 12. Коэффициент восстановления.
 - 13. Закон сохранения импульса и закон сохранения энергии для абсолютно упругого удара.
 - 14. Закон сохранения импульса и закон сохранения энергии для абсолютно неупругого удара.
 - 15. Скорость шарика при прохождении положения равновесия (вывод).
 - 16. Момент инерции материальной точки, твердого тела.
 - 17. Плечо силы. Момент силы.
 - 18. Основной закон динамики вращательного движения твердого тела.
 - 19. Кинетическая энергия и работа при вращательном движении.
 - 20. Теорема Штейнера.
 - 21. Идеальный газ. Уравнение состояния идеального газа.
 - 22. Внутренняя энергия, работа идеального газа.
 - 23. Первое начало термодинамики. Применить его к изопроцессам.
 - 24. Адиабатический процесс (І-ое начало, уравнение Пуассона).
 - 25. Показатель адиабаты. Число степеней свободы i, теплоемкости Сри CV.
 - 26. Явления переноса.

- 27. Природа вязкости. Градиент скорости.
- 28. Уравнение вязкости (закон Ньютона).
- 29. Коэффициент вязкости (вывод расчетной формулы).
- 30. Число Рейнольдса. Время релаксации.
- 31. Механические бегущие волны: поперечные и продольные.
- 32. Уравнение бегущей волны.
- 33. Скорость поперечной и продольной волн.
- 34. Связь длины волны, скорости и частоты бегущей волны.
- 35. Стоячие волны, их принципиальное отличие от всех других видов волн.
- 36. Уравнение стоячей волны. Пучности и узлы.
- 37. Проводники в электрическом поле.
- 38. Электроемкость проводника.
- 39. Конденсатор. Электроемкость плоского конденсатора (вывод).
- 40. Электроемкости параллельно и последовательно соединенных конденсаторов.
- 41. Электрическая схема по измерению емкости конденсатора (назначение всех элементов).
- 42. Характеристики электрического тока, закон Ома в дифференциальной форме.
- 43. Замкнутая электрическая цепь. Закон Ома в интегральной форме.
- 44. Закон Джоуля-Ленца в интегральной форме.
- 45. Физический смысл ЭДС.
- 46. Полезная мощность, ее зависимость от сопротивления R. Условие максимума.
- 47. Напряженность поля. Потенциал. Связь между ними.
- 48. Силовые и эквипотенциальные поверхности поля точечного заряда.
- 49. Основные элементы электронно-лучевой трубки (чертеж).
- 50. Скорость электронов, прошедших второй анод. Вывод формулы.
- 51. Траектория электронов в пространстве отклоняющих пластин.
- 52. Диполь. Плечо диполя. Электрический момент диполя.
- 53. Явление поляризации диэлектрика. Вектор поляризации.
- 54. Физический смысл диэлектрической проницаемости вещества.
- 55. Сегнетоэлектрики, их отличия от остальных диэлектриков.
- 56. Гистерезис. Показать на петле гистерезиса Doct. (или Рост.) и Екоэрц.
- 57. Что такое магнетрон? Его схема (вид сверху).
- 58. Показать на схеме магнетрона направление векторов:
- υ скорость электрона,
- b. В вектор индукции для любого направления тока,
- 60. Изобразить траекторию электронов в магнетроне при различных значениях токов в соленоиде.
 - 61. Закон Ампера.
 - 62. Сила Лоренца.

2 семестр:

- 63. Вектор магнитной индукции, напряженность магнитного поля, магнитная проницаемость среды.
 - 64. Закон Био-Савара-Лапласа.
- 65. Вектор индукции В магнитного поля бесконечно длинного прямолинейного проводника с током I (формула).
 - 66. Вектор индукции В магнитного поля для отрезка проводника с током (формула).
 - 67. Вектор индукции В магнитного поля в центре кругового тока (формула).
 - 68. Явление электромагнитной индукции. Определение. Правило Ленца.
 - 69. Закон Фарадея, его вывод.
- 70. Токи при замыкании и размыкании цепи. Явление самоиндукции, ЭДС самоиндукции (формула).
 - 71. Индуктивность катушки. Взаимная индуктивность катушек.
- 72. Вихревые токи. Вредны они или полезны? Почему сердечники трансформаторов не делают сплошными?
 - 73. Какие световые волны являются когерентными?
 - 74. Интерференция, определение.
- 75. Геометрическая и оптическая длина пути, оптическая разность хода, условия максимума и минимума.
 - 76. Установка для «колец Ньютона», ход лучей в ней.
 - 77. Практическое применение явления интерференции света.
 - 78. Дифракция света, определение.

- 79. Принцип Гюйгенса Френеля.
- 80. Фронт волны точечного и бесконечно удаленного источников, рисунок.
- 81. Метод зон Френеля для круглого отверстия. Условия максимума и минимума в точке М экрана.
 - 82. Метод зон для щели, условия максимума и минимума.
 - 83. Внешний фотоэффект, определение.
 - 84. Уравнение фотоэффекта.
 - 85. Законы фотоэффекта.

водорода и частотой его излучения?

- 86. Устройство фотоэлемента.
- 87. Принцип работы фотоумножителя.
- 88. Модели атома Томсона, Резерфорда, Бора.89. Постулаты Бора и происхождение линейчатых с
- 89. Постулаты Бора и происхождение линейчатых спектров.
 90. Имеется ли какая-либо связь между частотой обращения электрона вокруг ядра атома
 - 91. Вывести формулы для определения скорости электрона на пй орбите и радиуса пй орбиты.
- 92. Охарактеризовать изменения кинетической, потенциальной и полной энергий электрона в атоме при его удалении от ядра.
 - 93. Что такое валентная зона, запрещенная зона и зона проводимости?
 - 94. Какие полупроводники называются собственными, а какие примесными?
- 95. От чего зависит концентрация свободных носителей заряда в п-полупроводнике и в р-полупроводнике?
 - 96. Особенности температурной зависимости электропроводности полупроводников.
 - 97. Особенности температурной зависимости электропроводности металлов.
 - 98. Поглощение, спонтанное и вынужденное излучения.
 - 99. Основные компоненты оптического квантового генератора. Охарактеризовать их.
 - 100. Какое состояние среды называется инверсным?
 - 101. Почему смесь гелия и неона является хорошей активной средой для газового ОКГ?

Отличия лазерного излучения от любого другого излучения.

Примерное содержание расчетно-графических работы РГР № 1:

Компетенция ОПК-1:

Первый семестр:

- 1 задача: Камень брошен вертикально вверх с начальной скоростью . По истечении, какого времени находится на высоте ? Найти скорость камня на этой высоте. Сопротивлением воздуха пренебречь. Принять .
- 2 задача: Звуковые колебания, имеющие частоту и амплитуду, распространяются в упругой среде. Длина волны. Найти: 1) скорость распространения волн; 2) максимальную скорость частиц среды.
- 3 задача: Диск радиусом вращается согласно уравнению , где , , . Определить тангенциальное, нормальное и полное а, ускорения точек на окружности диска для момента времени .
- 4. задача: Плотность газа ρ при давлении p=96 кПа и темпе¬ратуре t=0°C равна 1,35 г/л. Найти молярную массу М газа.
- 5. задача: Определить давления p1 и p2 газа, содержащего N=109 молекул и имеющего объем V=1 см3, при температурах T1=3 K и T2=1000 K.
- 6. задача: К батарее с ЭДС ϵ = 300 В включены два плоских конденсатора емкостями C1 = 2пФ и C2 = 3пФ. Определить заряд Q и напряжение U на пластинках конденсаторов при последовательном и параллельном соединениях.
- 7. задача: Два одинаковых заряженных шара находятся на расстоянии . Сила отталкиванья шаров . После того как шары привели в соприкосновение и удалили друг от друга на прежнее расстояние, сила отталкиванья возросла и стала равной . Вычислить заряды q1 и q2, которые были на шарах до их соприкосновения. Диаметр шаров считать много меньшим расстояния между ними.
- 8. задача: Электрон в невозбужденном атоме водорода движется вокруг ядра по окружности радиусом . Вычислить магнитный момент эквивалентного кругового тока и механический момент М, действующий на круговой ток, если атом помещен в магнитное поле, линии индукции которого параллельны плоскости орбиты электрона. Магнитная индукция В поля равна 0,1Тл.
- 9. задача: Электрическое поле создано двумя точечными зарядами и , находящимися на расстоянии друг от друга. Определить напряженность поля в точке, удаленной от первого заряда на и от второго на .

Примерное содержание расчетно-графических работы РГР № 2: Компетенция ОПК-1:

Второй семестр:

- 1 задача: На концах медного провода длиной 1=5 м поддерживается напряжение U=1 В. Определить плотность тока j в проводе.
- 2. задача: По тонкому проводнику, изогнутому в виде правильного шестиугольника со стороной а =10 см, идет ток I = 20 A. Определить магнитную индукцию В в центре шестиугольника.
- 3. задача: В однородном магнитном поле с индукцией B=0.01 Тл помещен прямой проводник длиной l=20 см (подводящие провода находятся вне поля). Определить силу F, действующую на проводник, если по нему течет ток I=50 A, а угол ϕ между направлением тока и вектором магнитной индукции равен 30° .
- 4. задача: Оптическая разность хода \Box двух интерферирующих волн монохроматического света равна 0,3 λ . Определить разность фаз \Box ϕ .
- 5. задача: Определить энергию фотона єфотона, соответствующего второй линии в первой инфракрасной серии (серии Пашена) атома водорода.
- 6. задача: Какую часть массы ядра нейтрального атома плутония составляет масса его электронной оболочки?
- 7. задача: Радиус второго темного кольца Ньютона в отраженном свете r2=0,4 мм. Определить радиус R кривизны плосковыпуклой линзы, взятой для опыта, если она освещается монохроматическим светом с длиной волны $\lambda=0,64$ мкм.
- 8. задача: Определить энергию є фотона, испускаемого при переходе электрона в атоме водорода с третьего энергетического уровня на основной.
 - 9. задача: Определить первый потенциал возбуждения ф1 водорода.

Примерные вопросы по защите расчетно-графических работ: Компетенция ОПК-1:

- 1. Какие основные законы и явления используются в данной задаче?
- 2. Каков физический смысл задачи?
- 3. Рассказать ход решения задачи.
- 4. Почему при решении задачи используется определенная формула?
- 5. Как выбирается формула для решения задачи?
- 6. Может ли быть другое решение задачи?
- 7. Можно ли интегральное решение задачи заменить дифференциальным?
- 8. Какие модели используются при решении задачи?
- 9. Какие допущения сделаны при решении задачи?
- 10. Какая размерность применена при решении задачи?
- 11. Можно ли решить задачу в другой системе, например СГС?

Примерные практические задачи (задания) и ситуации Компетенция ОПК-1:

1 семестр:

- 1. Камень брошен вертикально вверх с начальной скоростью . По истечении, какого времени находится на высоте ? Найти скорость камня на этой высоте. Сопротивлением воздуха пренебречь. Принять .
- 2. По дуге окружности радиусом движется точка. В некоторый момент времени нормальное ускорение точки ; в этот момент векторы полного и нормального ускорений образуют угол . Найти скорость и тангенциальное ускорение точки.
- 3. Тело, брошенное с башни в горизонтальном направлении со скоростью , упало на землю на расстоянии S (от основании башни) вдвое большем высоты h башни. Найти высоту башни.
- 4. Диск радиусом вращается согласно уравнению , где , , . Определить тангенциальное, нормальное и полное а, ускорения точек на окружности диска для момента времени .
- 5. Винт аэросаней вращается с частотой . Скорость поступательного движения аэросаней равна . С какой скоростью и движется один из концов винта, если радиус винта равен .
- 6. Определить давления p1 и p2 газа, содержащего N=109 молекул и имеющего объем V=1 см3, при температурах T1=3 K и T2=1000 K.
- 7. Какой объем V занимает смесь азота массой m1 = 1 кг и гелия массой m2 = 1 кг при нормальных условиях?
- 8. В баллоне вместимостью V = 15 л находится смесь, содержащая m1 = 10 г водорода, m2 = 64 г водяного пара и m3 = 60 г оксида углерода. Температура смеси $t = 27^{\circ}$. Определить давление.
- 9. Какую ускоряющую разность потенциалов U должен пройти электрон, чтобы получить скорость υ = 8 Mm/c?
- 10. Заряд равномерно распределен по бесконечной плоскости с поверхностной плотностью $\sigma = 10$ нКл/м2. Определить разность потенциалов двух точек поля, одна из которых находится на плоскости, а

другая удалена от нее на расстояние а = 10 см.

- 11. К батарее с ЭДС ϵ = 300 В включены два плоских конденсатора емкостями C1 = 2пФ и C2 = 3пФ. Определить заряд Q и напряжение U на пластинках конденсаторов при последовательном и параллельном соединениях.
- 12. На концах медного провода длиной l = 5 м поддерживается напряжение U = 1 В. Определить плотность тока j в проводе.

Компетенция ОПК-1:

2 семестр:

- 1. По тонкому проводнику, изогнутому в виде пра¬вильного шестиугольника со стороной а =10 см, идет ток I = 20 A. Определить магнитную индукцию В в центре шестиугольника.
- 2. Обмотка соленоида содержит два слоя, плотно при \neg легающих друг к другу витков провода диаметром d=0,2 мм. Определить магнитную индукцию B на оси соленоида, если по проводу идет ток I=0,5 A.
- 3 В однородном магнитном поле с индукцией $B=0{,}01$ Тл помещен прямой проводник длиной l=20 см (подводящие провода находятся вне поля). Определить силу F, действующую на проводник, если по нему течет ток I=50 A, а угол ϕ между направлением тока и вектором магнитной индукции равен 30° .
- 4. Рамка с током I = 5 A содержит N = 20 витков тон¬кого провода. Определить магнитный момент рт рамки с током, если ее площадь S = 10см2.
- 5. По витку радиусом R=10 см течет ток I=50 А. Виток помещен в однородное магнитное поле $(B=0,2\,\,\mathrm{Tn})$. Определить момент силы M, действующей на виток, если плоскость витка составляет угол $\phi=60^{\circ}$ с линиями индук¬ции.
- 6. Протон влетел в магнитное поле перпендикулярно линиям индукции и описал дугу радиусом R = 10 см. Определить скорость υ протона, если магнитная индукция B = 1 Тл.
- 8. На пластину с щелью, ширина которой a=0.05 мм, падает нормально монохроматический свет с длиной вол¬ны $\lambda=0.7$ мкм. Определить угол ϕ отклонения лучей, соответствующий первому дифракционному максимуму.
- 9. Дифракционная решетка, освещенная нормально падающим монохроматическим светом, отклоняет спектр третьего порядка на угол $\phi 1 = 30^{\circ}$. На какой угол $\phi 2$ отклоняет она спектр четвертого порядка?
- 10. Угол преломления луча в жидкости i2 = 35°. Опре¬делить показатель преломления п жидкости, если известно, что отраженный пучок света максимально поляризован.
- 11. Вычислить длину волны де Бройля λ для электрона, прошедшего ускоряющую разность потенциалов U = 22,5 B.
- 12. Вычислить длину волны де Бройля λ , для протона, движущегося со скоростью $\upsilon = 0.6$ с (с скорость света в вакууме). Оценить с помощью соотношения неопределенностей минимальную кинетическую энергию Ттіпэлектрона, движущегося внутри сферической области диаметром d = 0.1 нм.

Примерный перечень вопросов к зачету:

Компетенция ОПК-1:

1 семестр:

Механика

- 1. Материальная точка. Системы отсчета. Кинематика поступательного движения. Траектория. Путь. Средняя скорость. Мгновенная скорость.
- 2. Среднее ускорение. Мгновенное ускорение. Касательное и нормальное ускорение. Равномерное и равноускоренное движение.
 - 3. Движение тела, брошенного под углом к горизонту.
- 4. Виды взаимодействий в природе. Характеристики некоторых сил: сила тяжести и вес тела, силы трения и упругости.
 - 5. Первый закон Ньютона. Инерциальные системы отсчета. Примеры.
- 6. Второй закон Ньютона. Дифференциальная форма второго закона Ньютона. Третий закон Ньютона. Границы применимости законов Ньютона. Сложение сил.
- 7. Определение механической работы (постоянной и меняющейся) силы. Графическое представление работы.
 - 8. Кинетическая энергия. Связь кинетической энергии с работой. Примеры.
- 9. Консервативные силы. Потенциальное поле. Потенциальная энергия и ее связь с работой. Потенциальная энергия тела в поле тяжести Земли. Энергия сжатой пружины.

- 10. Механическая энергия. Закон сохранения механической энергии. Примеры.
- 11. Кинематика вращательного движения. Угловое перемещение, угловая скорость и угловое ускорение. Векторный характер величин. Частота и период вращения.
- 12. Определение момента силы. Плечо силы. Основное уравнение динамики вращательного движения.
- 13. Момент инерции абсолютно твердого тела (вычисления моментов инерции). Физический смысл момента инерции. Теорема Штейнера.
 - 14. Определение момента импульса. Закон сохранения момента импульса. Примеры.
- 15. Кинетическая энергия вращающегося тела. Работа при вращательном движении. Энергия катящегося цилиндра.
- 16. Постулаты Эйнштейна. Преобразования Лоренца. Следствия из преобразований Лоренца. Одновременность.
 - 17. Следствия из преобразований Лоренца. Лоренцево сокращение длины.
 - 18. Следствия из преобразований Лоренца. Замедление времени. Интервал.
 - 19. Релятивистская динамика. Релятивистская масса. Взаимосвязь энергии и массы.

Термодинамика

- 20. Основное уравнение молекулярно-кинетической теории идеального газа.
- 21. Идеальный газ. Газовые законы. Уравнение Менделеева-Клапейрона.
- 22. Закон Максвелла для распределения молекул по скоростям.
- 23. Барометрическая формула. Распределение Больцмана.
- 24. Число степеней свободы. Закон Больцмана о равнораспределении энергии по степеням свободы.
- 25. Внутренняя энергия идеального газа. Работа газа при расширении. Работа газа при различных процессах.
- 26. Первое начало термодинамики. Применение первого начала термодинамики к изопроцессам.
 - 27. Теплоемкость газов. Уравнение Майера.
 - 28. Круговой процесс. Обратимый, необратимый процесс. Цикл Карно и его КПД.
- 29. Статистические закономерности распределения молекул газа по объему. Энтропия и ее статистическое толкование. Изменение энтропии. Расчет изменения энтропии при различных процессах.
- 30. Взаимодействие молекул. Уравнение состояния реального газа. Изотермы реального газа. Внутренняя энергия реального газа.

Электричество и постоянный ток

- 31. Закон Кулона. Применение закона Кулона в случае неточечных заряженных тел.
- 32. Электрическое поле. Напряженность электростатического поля. Принцип суперпозиции. Силовые линии.
- 33. Смещение (индукция) электростатического поля. Поток вектора смещения. Теорема Остроградского-Гаусса для электростатического поля. Применение теоремы Остроградского-Гаусса для расчета электростатического поля бесконечной равномерно заряженной сферы.
 - 34. Теорема Остроградского-Гаусса для электростатического поля.
- 35. Применение теоремы Остроградского-Гаусса для расчета электростатического поля бесконечной равномерно заряженной плоскости.
 - 36. Теорема Остроградского-Гаусса для электростатического поля.
- 37. Применение теоремы Остроградского-Гаусса для расчета электростатического поля бесконечной равномерно заряженного шара.
- 38. Работа сил электростатического поля по перемещению заряда. Циркуляция вектора напряженности электростатического поля.
 - 39. Потенциал электростатического поля. Эквипотенциальные поверхности.
- 40. Взаимосвязь напряженности и потенциала. Взаимное расположение силовых линий и эквипотенциальных поверхностей.
 - 41. Виды диэлектриков. Вектор поляризации. Диэлектрическая восприимчивость
- 42. Электрическое поле в диэлектрике. Диэлектрическая проницаемость и ее связь с восприимчивостью.
- 43. Проводники в электростатическом поле. Конденсаторы. Электроемкость плоского конденсатора.
 - 44. Энергия системы зарядов. Энергия электростатического поля.
- 45. Характеристики постоянного тока. Плотность тока. Закон Ома в дифференциальной форме. Сопротивление проводников
 - 46. Закон Ома для участка цепи и для полной цепи. Электродвижущая сила источника тока.
 - 47. Правила Кирхгофа для расчета электрических цепей.
 - 48. Работа и мощность тока. Закон Джоуля-Ленца.

49. Классическая теория электропроводности.

Примерный перечень вопросов к экзамену:

Компетенция ОПК-1:

2 семестр:

Магнитное поле

- 50. Напряженность магнитного поля. Закон Био-Савара-Лапласа. Применение закона Био-Савара-Лапласа для расчета индукции магнитного поля бесконечного, прямого проводника с током.
- 51. Закон полного тока (теорема о циркуляции вектора индукции магнитного поля). Применение закона полного тока для расчета поля бесконечно длинного соленоида. Поток вектора магнитной индукции. Теорема Остроградского-Гаусса для магнитного поля.
 - 52. Сила Лоренца. Движение заряженной частицы в магнитном поле. Эффект Холла.
 - 53. Сила Ампера. Взаимодействие параллельных токов.
 - 54. Магнитные моменты электронов и атомов. Диамагнетизм. Магнетики.
- 55. Вектор намагниченности. Магнитная восприимчивость. Диа-, пара-магнетики. Магнитное поле в веществе. Магнитная проницаемость. Ферромагнетики.
 - 56. Явления электромагнитной индукции. Вывод закона Фарадея-Ленца. Правило Ленца.
- 57. Самоиндукция. Индуктивность. Индуктивность бесконечно длинного соленоида. Энергия магнитного поля. Объемная плотность энергии.
 - Система уравнений Максвелла. Значение теории Максвелла.
 Колебания
- 59. Гармонические колебания и их характеристики. Кинематика гармонических колебаний. Дифференциальное уравнение гармонических колебаний. Энергия гармонических колебаний (механических и электрических).
- 60. Дифференциальное уравнение гармонических колебаний пружинного и физического маятников. Период колебаний этих маятников.
 - 61. Гармонические колебания в колебательном контуре. Формула Томсона.
- 62. Дифференциальное уравнение затухающих механических и электрических колебаний. Логарифмический декремент затухания.
- 63. Дифференциальное уравнение вынужденных механических колебаний и его решение. Резонансные кривые.
- 64. Переменный ток. Полное сопротивление цепи переменного тока. Последовательное и параллельное соединение.
- 65. Сложение колебаний одного направления одинаковой частоты. Векторные диаграммы. Сложение колебаний одного направления. Биения. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- 66. Волновые процессы. Продольные и поперечные волны. Уравнение бегущей волны. Волновое уравнение. Волновой пакет. Групповая скорость.

Волновая и квантовая оптика. Квантовая механика

- 67. Электромагнитные волны. Характеристики световых волн. Интенсивность световой волны.
- 68. Когерентность световых волн. Интерференция света от двух источников. Интерференционные условия для разности фаз и разности хода.
 - 69. Методы наблюдения интерференции света (бипризма Френеля, опыт Юнга)
- 70. Интерференция в тонких пленках. Вывод формулы для оптической разности хода лучей в тонкой пленке.
- 71. Виды дифракции. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция света на круглом отверстии, от круглого диска, на узкой щели, на дифракционной решетке.
- 72. Дифракция рентгеновских лучей. Условие Вульфа-Брэггов. Применение дифракции рентгеновского излучения.
- 73. Естественный и поляризованный свет. Закон Брюстера. Закон Малюса. Поляризация света при двойном лучепреломлении. Дихроизм. Призма Николя. Оптическая активность вещества.
- 74. Характеристики теплового излучения. Закон Кирхгофа. Закон Стефана- Больцмана. Закон смещения Вина. Закон Рэлея –Джинса. Ультрафиолетовая катастрофа. Формула Планка. Законы теплового излучения и их получение из формулы Планка.
- 75. Законы фотоэффекта. Вольтамперная характеристика фототока. Задерживающий потенциал. Ток насыщения. Работа выхода. Уравнение Эйнштейна для фотоэффекта. Красная граница фотоэффекта.
 - 76. Фотоны. Давление света . Эффект Комптона. Корпускулярно-волновой дуализм света.
 - 77. Опыт Резерфорда. Постулаты Бора.
- 78. Корпускулярно-волновой дуализм вещества. Длина волны де-Бройля. Экспериментальные доказательства волновых свойств частиц.
 - 79. Соотношение неопределенностей Гейзенберга. Вывод соотношения неопределенностей на

основе волновых свойств частиц.

- 80. Уравнение Шредингера. Физический смысл пси-функции. Решение уравнения Шредингера для бесконечно-глубокой потенциальной ямы.
 - 81. Потенциальный барьер. Туннельный эффект. Гармонический осциллятор.
- 82. Закономерности в атомных спектрах. Формула Бальмера. Боровская модель атома водорода. Достоинства и недостатки теории Бора.
- 83. Квантовомеханическая модель атома водорода. Квантовые числа. Вырожденные состояния. Правила отбора.
 - 84. Спонтанное и вынужденное излучение. Лазеры.
- 85. Энергетические зоны в кристаллах. Структура энергетических зон металлов, полупроводников и диэлектриков. Полупроводники (собственные и примесные). Структура энергетических зон примесных и собственных полупроводников.

Образец экзаменационного билета

Кафедра Экзаменационный билет № Утверждаю» (к911) Физика и теоретическая механика Физика Зав. кафедрой 2 семестр, 2025-2026 ПОДВИЖНОЙ СОСТАВ ЖЕЛЕЗНЫХ ДОРОГ Специализация: Электрический транспорт железных дорог 23.05.2025 г. Вопрос Напряженность магнитного поля. Закон Био-Савара-Лапласа. Применение закона Био-Савара	Полиморосточний торуморостроми и инпрором тору сообщения							
(к911) Физика и теоретическая механика и теоретическая механика 2 семестр, 2025-2026 Физика Специальность 23.05.03 Пячин С.А., профессор ПОДВИЖНОЙ СОСТАВ ЖЕЛЕЗНЫХ ДОРОГ Специализация: Электрический транспорт железных дорог 23.05.2025 г. Вопрос Напряженность магнитного поля. Закон Био-Савара-Лапласа. Применение закона Био-Савара	Дальневосточный государственный университет путей сообщения							
механика 2 семестр, 2025-2026 Специальность 23.05.03 Пячин С.А., профессор ПОДВИЖНОЙ СОСТАВ ЖЕЛЕЗНЫХ ДОРОГ Специализация: Электрический транспорт железных дорог Вопрос Напряженность магнитного поля. Закон Био-Савара-Лапласа. Применение закона Био-Савара	Кафедра Экзаменационный билет № Утверждаю»							
2 семестр, 2025-2026 ПОДВИЖНОЙ СОСТАВ ЖЕЛЕЗНЫХ ДОРОГ Специализация: Электрический транспорт железных дорог Вопрос Напряженность магнитного поля. Закон Био-Савара-Лапласа. Применение закона Био-Савара-	• •							
ЖЕЛЕЗНЫХ ДОРОГ Специализация: Электрический транспорт железных дорог Вопрос Напряженность магнитного поля. Закон Био-Савара-Лапласа. Применение закона Био-Савара	механика							
Специализация: Электрический транспорт железных дорог Вопрос Напряженность магнитного поля. Закон Био-Савара-Лапласа. Применение закона Био-Савара-	2 семестр, 2025-2026 ПОДВИЖНОЙ СОСТАВ 23.05.2025 г.							
транспорт железных дорог Вопрос Напряженность магнитного поля. Закон Био-Савара-Лапласа. Применение закона Био-Савара-	ЖЕЛЕЗНЫХ ДОРОГ							
Вопрос Напряженность магнитного поля. Закон Био-Савара-Лапласа. Применение закона Био-Савара-	Специализация: Электрический							
	транспорт железных дорог							
(OHIC 1)	Вопрос Напряженность магнитного поля. Закон Био-Савара-Лапласа. Применение закона Био-Савара-							
Лапласа для расчета индукции магнитного поля бесконечного, прямого проводника с током. (ОПК-1)								
Вопрос (ОПК-1)								
Задача (задание) (ОПК-1)	Задача (задание) (ОПК-1)							

Примечание. В каждом экзаменационном билете должны присутствовать вопросы, способствующих формированию у обучающегося всех компетенций по данной дисциплине.

3. Тестовые задания. Оценка по результатам тестирования.

3.1. Примерные задания теста

Задание 1 (ОПК-1)

Выберите правильный вариант ответа.

Условие задания: Последовательность в порядке возрастания радиуса

- 1: электрон
- 2: ядро атома
- 3: атом
- 4: молекула

Задание 2 (ОПК-1)

Последовательность в порядке возрастания длительности

- 1: нс
- 2: мкс
- 3: мс
- 4: c
- 5: мин
- 6: час

Задание 3 (ОПК-1)

На рисунке вектор мгновенной скорости точки при ее движении по кривой АВ это:

- 1. Вектор 1
- 2. Вектор 2
- 3. Вектор 3
- 4. Вектор 4
- 5. нет правильного ответа

Задание 4 (ОПК-1)

Указать правильный ответ

Цикл Карно:

1. Состоит из двух изотерм и двух изобар

- 2. Состоит из двух изохор и двух изобар
- 3. Состоит из двух изотерм и двух адиабат
- 4. Это круговой процесс

Задание 5 (ОПК-1)

Последовательность в порядке возрастания длительности

Последовательность в порядке возрастания

- 1: мПа
- 2: Па
- 3: кПа
- 4: МПа

Задание 6 (ОПК-1)

Указать правильный ответ

Цикл Карно:

- 1. Состоит из двух изотерм и двух изобар
- 2. Состоит из двух изохор и двух изобар
- 3. Состоит из двух изотерм и двух адиабат
- 4. Это круговой процесс

Задание 7 (ОПК-1)

Последовательность в порядке возрастания твердости материала

- 1: пар
- 2: жидкость
- 3: сталь
- 4: алмаз
- 5: нанокомпозитные металлические покрытия

Задание 8 (ОПК-1):

Соответствие между видами колебательных систем и их периодами

Пружинный маятник

Физический маятник

Колебательный контур

Математический маятник

Задание 9 (ОПК-1):

Ввести правильный ответ с клавиатуры

Первичная обмотка трансформатора имеет $\omega 1=10000$ витков провода и включена в сеть переменного тока с напряжением U1=100 В. Число витков вторичной обмотки $\omega 2$, если ее сопротивление r=1 Ом, напряжение на концах U2=4 В, а сила тока в ней I=1A, будет равно:

Задание 10 (ОК-1):

Указать правильный ответ

Закон сохранения электрического заряда:

- 1. в замкнутой системе энергия зарядов остается постоянной
- 2. в любой электрически изолированной системе сумма зарядов остается постоянной
- 3. в инерциальных системах отсчета сумма зарядов остается постоянной
- 4. заряд системы не зависит от скорости ее движения

Задание 11 (ОПК-1):

Указать правильный ответ

Сила, действующая на заряд, движущийся в магнитном поле,

- 1. обратно пропорциональна его скорости
- 2. не зависит от его скорости
- 3. пропорциональна квадрату его скорости
- 4. прямо пропорциональна его скорости

Задание 12 (ОПК-1):

Укажите правильный ответ

Диэлектрик отличается от проводника тем, что

- 1. в нем не возникает разделения зарядов в электрическом поле
- 2. он состоит из нейтральных молекул, а проводник из ионов
- 3. он не оказывает влияние на внешнее электрическое поле
- 4. в нем практически нет свободных электронов

Задание 13 (ОПК-1):

Указать правильный ответ

Дисперсия света - это

- 1. зависимость показателя преломления вещества от частоты света
- 2. зависимость показателя преломления от вещества
- 3. зависимость фазовой скорости световых волн от частоты света
- 4. зависимость скорости света от среды
- 5. нет верного ответа

Задание 14 (ОПК-1):

Указать правильный ответ

Тепловое излучение совершается

- 1. за счет энергии, выделяющейся при химической реакции
- 2. за счет внутренней энергии тела
- 3. за счет энергии валентных электронов
- 4. за счет люминесценции электронов
- 5. нет правильного ответа

Полный комплект тестовых заданий в корпоративной тестовой оболочке АСТ размещен на сервере УИТ ДВГУПС, а также на сайте Университета в разделе СДО ДВГУПС (образовательная среда в личном кабинете преподавателя).

Полный комплект тестовых заданий в корпоративной тестовой оболочке АСТ размещен на сервере УИТ ДВГУПС, а также на сайте Университета в разделе СДО ДВГУПС (образовательная среда в личном кабинете преподавателя).

Соответствие между бальной системой и системой оценивания по результатам тестирования устанавливается посредством следующей таблицы:

Объект	Показатели	Оценка	Уровень
оценки	оценивания		результатов
	результатов обучения		обучения
Обучающийся	60 баллов и менее	«Неудовлетворительно»	Низкий уровень
	74 – 61 баллов	«Удовлетворительно»	Пороговый уровень
	84 – 75 баллов	«Хорошо»	Повышенный уровень
	100 – 85 баллов	«Отлично»	Высокий уровень

4. Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета, зачета, курсового проектирования.

Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета, зачета

Элементы оценивания		Содержание п	ікалы оценивания	
	Неудовлетворительн	Удовлетворитель	Хорошо	Отлично
	Не зачтено	Зачтено	Зачтено	Зачтено
Соответствие ответов формулировкам вопросов (заданий)	Полное несоответствие по всем вопросам.	Значительные погрешности.	Незначительные погрешности.	Полное соответствие.
Структура, последовательность и логика ответа. Умение четко, понятно, грамотно и свободно излагать свои мысли	Полное несоответствие критерию.	Значительное несоответствие критерию.	Незначительное несоответствие критерию.	Соответствие критерию при ответе на все вопросы.

Знание нормативных, правовых документов и специальной литературы	Полное незнание нормативной и правовой базы и специальной литературы	Имеют место существенные упущения (незнание большей части из документов и специальной литературы по названию, содержанию и	Имеют место несущественные упущения и незнание отдельных (единичных) работ из числа обязательной литературы.	Полное соответствие данному критерию ответов на все вопросы.
Умение увязывать теорию с практикой, в том числе в области профессиональной работы	Умение связать теорию с практикой работы не проявляется.	т.д.). Умение связать вопросы теории и практики проявляется редко.	Умение связать вопросы теории и практики в основном проявляется.	Полное соответствие данному критерию. Способность интегрировать знания и привлекать сведения из различных научных сфер.
Качество ответов на дополнительные вопросы	На все дополнительные вопросы преподавателя даны неверные ответы.	Ответы на большую часть дополнительных вопросов преподавателя даны неверно.	. Даны неполные ответы на дополнительные вопросы преподавателя. 2. Дан один неверный ответ на дополнительные вопросы преподавателя.	Даны верные ответы на все дополнительные вопросы преподавателя.

Примечание: итоговая оценка формируется как средняя арифметическая результатов элементов оценивания.